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Abstract
1.	 Disgust is an adaptive system hypothesized to have evolved to reduce the risk 

of becoming sick. It is associated with behavioural, cognitive and physiological 
responses tuned to allow animals to avoid and/or get rid of parasites, pathogens 
and toxins.

2.	 Little is known about the mechanisms and outcomes of disease avoidance in wild 
animals. Furthermore, given the escalation of negative human-wildlife interac-
tions, the translation of such knowledge into the design of evolutionarily relevant 
conservation and wildlife management strategies is becoming urgent.

3.	 Contemporary methods in animal ecology and related fields, using direct (sensory 
cues) or indirect (remote sensing technologies and machine learning) means, pro-
vide a flexible toolbox for testing and applying disgust at individual and collective 
levels.

4.	 In this review/perspective paper, we provide an empirical framework for testing 
the adaptive function of disgust and its associated disease avoidance behaviours 
across species, from the least to the most social, in different habitats. We predict 
various trade-offs to be at play depending on the social system and ecology of the 
species.

5.	 We propose five contexts in which disgust-related avoidance behaviours could 
be applied, including endangered species rehabilitation, invasive species, crop-
raiding, urban pests and animal tourism.

6.	 We highlight some of the perspectives and current challenges of testing disgust in 
the wild. In particular, we recommend future studies to consider together disease, 
predation and competition risks. We discuss the ethics associated with disgust 
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1  |  INTRODUC TION

1.1  |  Into the wild: Eat and be eaten

Animals have evolved with selective pressures such as disease and 
predation that have shaped their morphology, physiology, behaviour 
and ecology. Consider the maxillary overhang (the tip of the upper 
beak curving beyond the lower mandible) that some bird species ex-
hibit. The longer the overhang, the better individuals are at removing 
lice during preening (Moyer et al.,  2002). When morphology does 
not allow for defence against parasites or predators, and when be-
haviour (see below) supersedes the costs of a constitutive defence, 
physiology can play a predominant role. For instance, ground squir-
rels (Otospermophilus spp.) that share an evolutionary history with 
viperid snakes show resistance to their venom (Biardi et al., 2006). 
Other species have evolved extreme behavioural adaptations to 
get rid of parasites. When infected with internal parasitic copepods 
(Arthurius sp.), the sea slug Elysia atroviridis self-decapitate and re-
grow a new body free of parasites (Mitoh & Yusa, 2021). Beyond in-
dividuals, parasites can also shape ecological communities. A mange 
Sarcoptes scabiei outbreak in 2015 in Argentina's San Guillermo 
National Park killed most of the vicuña Vicugna vicugna popula-
tion, a mammalian herbivore foraging in meadows during the day 
to avoid its predator, the puma Puma concolour. Consequently, plant 
biomass, cover and height increased in meadows, homogenizing the 
landscape. Less prey were available for the pumas, and thus few 
carcasses were left for the Andean condors Vultur gryphus after the 
early stages of the outbreak. This led the vulnerable condors to sig-
nificantly reduce their use of the protected area (Monk et al., 2022).

The existing literature contains far more examples of prey–
predator than host–parasite interactions (Raffel et al.,  2008). The 
ecology of fear (Brown et al., 1999) was conceptualized much earlier 
than the ecology of disgust (Buck et al., 2018; Weinstein et al., 2018), 
or more generally the ecology of peril, which accounts for both per-
ceived predation and disease risks (Doherty & Ruehle, 2020). Even in 
disciplines that interplay with animal ecology, such as cognitive sci-
ences and conservation biology (Dominoni et al., 2020; Real, 1993), 
predator avoidance is considered far more often than parasite avoid-
ance (Griffin et al., 2000; Mettke-Hofmann, 2014; Szabo et al., 2022). 
This discrepancy may be due to a size difference between predators 
(generally larger than their prey) and parasites (usually smaller than 
their hosts), but also to differences in outcomes: instant death vs. 
fitness reduction or slower death (in the case of lethal pathogens; 
Box 1). For instance, 15 years of mortality data in southern sea otters 
Enhydra lutris nereis show that the primary cause of death was white 

shark Carcharodon carcharias bite (28%). However, when consider-
ing primary and contributing causes of death together, pathogens 
provoked the highest death rates (63%; Miller et al., 2020). Greater 
energy is thus allocated to avoiding more lethal natural enemies such 
as predators and some of the more dangerous parasites, than non-
lethal ones (Buck et al., 2018; Doherty & Ruehle, 2020).

1.2  |  Avoidance, resistance, tolerance or the 
ART of pathogen handling

Just as predators employ different strategies to capture their 
prey (i.e. ambush, interception and pursuit), parasites and patho-
gens use different pathways to infect their hosts (e.g. faecal-oral, 
trophic, respiratory)—which imply numerous trade-offs (Antonovics 
et al., 2017). Hosts have evolved three strategies to defend them-
selves against parasites, pathogens and toxins: avoidance, resist-
ance and tolerance (ART; Rivas et al.,  2014). As defined by Rivas 
et al. (2014), ART calls on distinct immune systems interacting with 
each other (see Schaller et al., 2010 and “Disgust” below): the behav-
ioural immune system prompting avoidance and removal (Amoroso 
& Antonovics, 2020; Schaller & Park, 2011), and the physiological 
immune system underlying resistance and tolerance (Figure 1).

In this paper, we focus on behaviours as these are the front-
line defences against parasites and pathogens (Sarabian, Curtis, & 
McMullan, 2018). We propose to adapt the ART framework to bet-
ter encapsulate the variation in (and levels of) behavioural immunity, 
based on the type (endo- vs. ecto-), timing (before vs. after), severity 

experiments in the above contexts. Finally, we promote the creation of a database 
gathering disease avoidance evidence in animals and its applications.

K E Y W O R D S
behavioural immunity, ecological niches, field experiments, landscape of disgust, pathogen 
avoidance, sensory aversion, social systems

BOX 1 Glossary

Parasite: any organism that lives in or on another or-
ganism (its host) and gets food from or at its host's expense 
(i.e. endoparasite, ectoparasite).

Pathogen: organism that causes disease (i.e. bacterium, 
virus, protozoan, fungus, worm).

Toxin: poisonous substance produced by living cells or 
organisms capable of causing disease or death (e.g. plant 
alkaloid).

Contaminant: biological or chemical substance con-
taining infectious agents or poisons/toxins (e.g. faeces, 
heavy metal).
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of the fitness cost, and ecological context of infection/exposure/
intoxication (Figure  1). As such, avoidance occurs when parasites/
pathogens are detected through species-specific sensory modali-
ties before infection and when the cost of the behavioural action 
is lower than the cost of acquiring the infection, or in other words 
net-beneficial (see Oliva-Vidal et al., 2021; Table S1). For instance, 
by avoiding faeces altogether in a feeding context and not being dis-
criminatory between fresh and old ones, mandrills Mandrillus sphinx 
can evade a large array of faecally-borne parasites with different life 
cycles (Poirotte et al., 2019).

Removal happens once a parasite has been acquired, and when 
the behavioural action does not exceed the cost of infection. For 
instance, preening or grooming is regularly used by numerous spe-
cies of birds and mammals to remove lice and ticks, as well as to 
maintain social bonds when performed in a social context (Bush & 
Clayton, 2018; Henazi & Barrett, 1999). Self-medication is a case of 
removal, as it can help expel gastrointestinal parasites and treat or 
prevent skin disease via either the ingestion or cutaneous applica-
tion of plant secondary metabolites or arthropod toxins (Clayton & 
Wolfe, 1993; Morrogh-Bernard et al., 2017).

Finally, tolerance happens when hosts minimize or just bear the 
costs of infection rather than aiming to eliminate the parasites/
pathogens altogether. For instance, banded mongooses Mungos 
mungo do not avoid conspecifics infected with Mycobacterium mungi, 

a causative agent of tuberculosis that manifests as nasal swelling and 
skin lesions in these animals. This lack of avoidance is perhaps due to 
their highly cohesive social system, which would not allow the sur-
vival of isolated individuals and thus ultimately promotes equal ex-
posure among the colony (Fairbanks et al., 2015). Alternatively, close 
social bonds or responsibilities, such as those seen between mother-
offspring dyads, might suppress avoidance behaviour and promote 
tolerance, as shown in vampire bats Desmodus rotundus (Stockmaier 
et al., 2020) and mandrills (Poirotte & Charpentier, 2020). Among the 
three strategies for dealing with parasite threats, however, avoid-
ance is likely the most cost-effective as it offers a direct means of 
prevention.

2  |  DISGUST: A SCULPTURE OF 
E VOLUTION TO PRE VENT INFEC TION

What triggers avoidance? One hypothesis is that disgust, an adap-
tive system based in neural tissue (Homo sapiens: Phillips et al., 1997; 
Macaca mulatta: Caruana et al.,  2011; Mus musculus: Dolensek 
et al., 2020), evolved to detect cues that co-occur with parasites, path-
ogens and toxins and instigate behavioural, cognitive and physiologi-
cal responses that reduce the risk of getting sick (Curtis et al., 2011; 
Curtis & Biran, 2001; Kavaliers et al., 2021; Oaten et al., 2009; Tybur 

F I G U R E  1  The ART of immunity. (a) Organisms and molecules capable of damaging hosts' fitness, from top to bottom: endoparasites, 
which can be pathogens; ectoparasites and toxins. The colour and width of the circle reflect the main strategy (avoidance: red; removal: 
green; tolerance: yellow) predicted to be used by the hosts to handle these threats when detected. Note that for lethal biotoxins produced 
by predators or by prey toward predators, the main strategy would be the avoidance of the conspicuous signs associated with these animals 
(not represented in this model). (b) Part of the ART framework intervenes before (i.e. avoidance) and the other part after infection or 
exposure (i.e. removal/resistance and tolerance). The behavioural components of ART are written in red and illustrated with examples found 
in the main text (A: avoidance of pathogenic bacteria in dung beetles; R: lice picking in Japanese macaques; T: acceptation of visibly diseased 
group members in banded mongooses). (c) Avoidance and removal call upon the behavioural immune system while tolerance mainly involves 
the physiological immune system (along with behaviours that may compensate infection). (d) ART investment based on fitness costs: while 
avoidance and removal may increase with the fitness cost of the parasite, pathogen or toxin, tolerance is expected to decrease. Created with 
BioRender.
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et al., 2013; Figure 2). For instance, female western lowland goril-
las Gorilla gorilla gorilla are likely to leave their group when other 
members or the mature male (“silverback”) present severe facial skin 
lesions caused by a Treponema bacterium (Baudouin et al.,  2019). 
Similarly, Caenorhabditis elegans (302-neuron-1-millimetre-long 
nematodes) move away from pathogenic bacteria when placed to-
gether in a Petri dish (Pradel et al., 2007). Even coprophagic dung 
beetles Scarabaeus (Kheper) lamarcki will not approach carnivore 
faeces due to a volatile compound (phenol) produced by pathogenic 
bacteria decomposing proteins therein (Mansourian et al., 2016).

Besides visual and olfactory cues, healthy subjects can also 
receive warnings via sensory cues that require contact with the 
contaminant. Newborns of several species, including rats Rattus nor-
vegicus (albino Sabra strain), chimpanzees Pan troglodytes, gorillas, 
orangutans Pongo pygmaeus, humans and other primates, express 
behaviours that appear aimed at expelling toxins out of the mouth 
(Rozin et al., 2008) such as the downward protrusion of the tongue, 
gaping and/or grimacing after tasting quinine (a bitter-tasting alkaloid 
found in the bark of cinchona trees; Ganchrow et al., 1983; Steiner 
et al., 2001). Another example is instant hand removal after touching 
invisible soft and moist substrates, physical conditions that favour 
pathogen development (humans: Oum et al.,  2011; chimpanzees: 
Sarabian et al.,  2017). Perceived stickiness and adhesiveness may 
also trigger post-contact hygienic behaviours such as hand washing 
in humans (Saluja & Stevenson, 2022), penis wiping (with leaves) in 
chimpanzees (O'Hara & Lee,  2006), and food processing (rubbing, 
rolling, and washing) in macaques (Macaca fuscata: Sarabian & 

MacIntosh, 2015; Macaca fascicularis: Sarabian et al., 2020). Disgust 
can be divided into several domains based on the route of parasite/
pathogen (and toxin) transmission (Tybur et al., 2009, 2013), its elic-
itors (Amoroso et al., 2019) and the different actions to avoid them 
(Curtis & de Barra, 2018). Kupfer et al. (2021) propose two main com-
ponents: the gut defence system—to which the examples above and 
the proposed framework below refer—and the skin defence system 
directed toward ectoparasites, which needs further investigation.

Disgust not only influences behaviour across differing scales, 
from individual facial expressions (Darwin, 2015; Ekman et al., 1992) 
to the collective decisions of groups (see above; Table S1), but may 
also affect animal cognition. Several studies conducted with human 
subjects show that we are slower in discriminating shapes when ex-
posed to disgusting images (e.g. of cockroaches) compared to neutral 
and fear images (Chapman et al., 2013; Krusemark & Li, 2011), and 
that we better recall disgusting images compared to scary or neu-
tral ones (Moeck et al., 2021). Recent findings in chimpanzees also 
show that repeated exposure to disgust-related images (Haberkamp 
et al., 2017) diminish their performance in a number ordering task 
(Sarabian, MacIntosh, & Adachi, 2021); they perform the task faster 
after displays of snake images but slower after carcass images (of 
non-primates) compared to control mosaic images (Cécile Sarabian, 
unpublished data). After an initial attentional bias during information 
processing (Perone et al.,  2021), disgust-related images elicit gaze 
avoidance in humans (e.g. Armstrong et al., 2014), which may prime 
the body to escape infection. A similar process in chimpanzees may 
alter their focus on the task and reduce their performance (Sarabian, 

F I G U R E  2  The adaptive system of disgust. An animal (host) detects sensory cues that co-occur with parasites, pathogens (e.g. faeces) 
and/or toxins—which instigates physiological (e.g. activation of the insula in humans, macaques and mice), cognitive and behavioural (e.g. 
pathogen avoidance) responses reducing the risk of disease. Created with BioRender. Darwin's expression of disgust was modified from the 
original image under a Creative Commons licence.
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MacIntosh, & Adachi,  2021). Replication studies are now needed 
in species that have different psychological and neurobiological 
architectures.

Just as the body will respond immunologically to fear by pre-
paring for injury or attack (see Maier & Watkins,  1998), disgust 
initiates physiological immune responses to prepare the body for 
infection (Schaller et al.,  2010). For instance, people exposed to 
images indicative of pathogen presence increase their level of cy-
tokines involved in the inflammatory process that clears infection 
(Schaller et al., 2010; Stevenson et al., 2011). Physiological immune 
responses may be particularly helpful when behaviour and cogni-
tion are constrained by other factors such as nutrition (Sarabian 
& MacIntosh,  2015), parental care (Case et al.,  2006; Poirotte 
& Charpentier,  2020; Stockmaier et al.,  2020), reproduction 
(Paciência et al., 2019) or limited space. When exposed to lethar-
gic conspecifics infected with Mycoplasma gallisepticum (provoking 
chronic respiratory disease or conjunctivitis in birds), caged domes-
tic canaries Serinus canaria domestica increased neutrophils in their 
bloodstream, synonymous with an activated physiological immune 
system (Love et al.,  2021). What these trade-offs also point at is 
the individual and environmental variability in pathogen (disgust) 
sensitivity, leading to different health outcomes. State-of-the-art 
research in primates show that the more hygienic/disgust-sensitive 
individuals are, the fewer infections (intensity or richness) they have 
(Japanese macaques: Sarabian & MacIntosh, 2015; grey mouse le-
murs Microcebus murinus: Poirotte & Kappeler, 2019; bonobos Pan 
paniscus: Sarabian, Belais, & MacIntosh,  2021; humans: Cepon-
Robins et al., 2021).

The preventive function of disgust seems evident from the liter-
ature and the examples given above, but the likelihood that disgust 
also acts to communicate risk is a crucial aspect that has received 
little attention outside of the laboratory. Recognition of a ‘disgusted’ 
individual would confer a selective advantage to the perceivers of 
such signals or cues. In mammals, this can translate into the acti-
vation of facial muscles. For instance, humans, macaques and mice 
wrinkle the nose, narrow the eyes and raise the upper lip (Caruana 
et al., 2011; Dolensek et al., 2020; Ekman et al., 2002), which may 
benefit the emitter by restricting exposure to sensory cues but also 
viewers by communicating a potential pathogen threat. These facial 
expressions can be innate or learnt depending on the pathogenicity/
toxicity of the elicitor (Dolensek et al., 2020; Soussignan et al., 1997). 
Beyond mammals, other species can learn what not to eat by attend-
ing to conspecifics distaste response. Birds experiencing unpalat-
able food (i.e. with toxin) would shake their head, wipe their bill and 
gape (Sherwin et al., 2002; Thorogood et al., 2018). In most cases, 
conspecific observers avoid eating the food associated with these 
behavioural signs (domestic hen Gallus gallus domesticus chicks: 
Johnston et al., 1998; great tits Parus major: Hämäläinen et al., 2019, 
2020), but see Sherwin et al.  (2002) for adult hens, which did not. 
Investigating such traits in other species, whether at a ‘micro-facial’ 
scale or at a larger behavioural or ecological scale is essential for 
understanding social transmission of this information (Box 2).

In sum, parasite avoidance and disgust involve innate and/or 
learnt behaviours that evolved in the context of the ecology and 
social lives of different species (Buck et al.,  2018; Curtis,  2014; 
Kavaliers et al., 2021).

2.1  |  Moving beyond model species and lab 
experiments

Most studies exploring the behavioural components of disgust have 
been performed in a controlled environment with a few model taxa: 
social insects (Cremer et al., 2007); fish (Behringer et al., 2018); un-
gulates (Coulson et al., 2018); rodents (Kavaliers et al., 2021); and 
humans (Tybur et al., 2014). Yet, disgust is gaining more attention in 
the fields of ecology and animal behaviour. Weinstein et al.  (2018) 
pioneered a theoretical framework examining the role of the adap-
tive system of disgust and its associated parasite avoidance be-
haviours (in addition to predator avoidance; Laundre et al.,  2010) 
in shaping ecosystems. However, empirical evidence of parasite 
avoidance in the wild is mainly limited to certain taxa and spe-
cies at individual and group levels of ecological organization (Buck 
et al., 2018; Sarabian, Curtis, & McMullan, 2018). While strategies 
to prevent infection may be restricted to or at least dominated by 
screening food and substrates for contamination in solitary species, 
group-living species may additionally need to avoid infected conspe-
cifics and their ‘byproducts’ (Table S1). For example, recent studies 
on the avoidance of dead carnivores by carnivores support the in-
fection risk reduction hypothesis (Gonzálvez, Martínez-Carrasco, 
& Moleón,  2021; Gonzálvez, Martínez-Carrasco, Sánchez-Zapata, 
et al., 2021; Moleón et al., 2017; Oliva-Vidal et al., 2021). Studying 
the behavioural components of disgust in a wider panel of species in 
their natural environment and/or in relevant contexts could provide 

BOX 2 Key questions regarding the social 
transmission of disgust

•	 What signals (i.e. features that have the function of 
communicating information) might be transmitted and 
perceived?

•	 Who is the signaller and the receiver?
•	 What role does social and/or associative learning play 

in any subsequent avoidance behaviours (see Turcsán 
et al., 2015)?

•	 Do solitary species lack such signals and/or are they less 
sensitive to them?

•	 Can states of disgust be transmitted across species—as 
fear can (Adolphs, 2013)?

•	 What might be the ecological consequences of an inter-
specific spread of disgust states?
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valuable information that may have direct applications to their con-
servation in the wild (see below).

2.2  |  Potential applications of disgust

Most methods used in wildlife management and conservation are 
based on human needs without considering the adaptive behav-
ioural strategies of the targeted species (Berger-Tal et al., 2016; 
Khorozyan & Waltert,  2021; Mumby & Plotnik,  2018). Cost-
effective deterrence methods based on fear and disgust (although 
not labelled as such) have been used to mitigate negative human-
wildlife interactions in a few instances. For example, anti-predator 
signals (e.g. eyespots, illness-associated smells/tastes) reduce 
predation from carnivores on livestock, eggs and endangered spe-
cies (Radford et al., 2020; Snijders et al., 2021; Tobajas, Descalzo, 
et al.,  2020). Felid growls and beehives reduce crop-raiding by 
elephants (Elephas maximus: Thuppil & Coss,  2016; Loxodonta 
africana: King et al.,  2017). Besides conditioned-taste aversion 
(CTA; see below), a type of learning which allows an individual 
to rapidly form an association between illness (e.g. nausea) and 
a particular taste or food item (Snijders et al., 2021), disgust ap-
plications in conservation are scarce. The ecology of disgust is 

still in its infancy and transitioning from theory to practice is chal-
lenging. However, based on the growing literature about parasite 
avoidance in nature (Table S1) and the efficient use of disgust in 
public health (Biran et al., 2014; Curtis, 2011) and consumer be-
haviour (Powell, 2021), we propose five contexts, with examples 
of species, in which disgust-related avoidance behaviours could 
be further applied. These include endangered species reintroduc-
tion and survival, invasive species, crop-raiding, urban pests and 
animal tourism.

3  |  CONTEMPOR ARY METHODS TO 
STUDY DISGUST IN THE WILD

The study of avoidance behaviours in wildlife mainly used pathogen-
related visual and/or olfactory cues (see Table  S1). These sensory 
cues were adapted to the host–parasite/pathogen systems tested 
but also denote the absence of investigation in taxa relying primarily 
on chemosensory and haptic modalities such as reptiles (e.g. croco-
dilians, snakes) and molluscs (e.g. cephalopods). Below, we provide 
examples of direct (via sensory cues) and indirect (via computer and 
machine learning) methods that can be applied to the study of dis-
gust in wild animals (Figure 3).

F I G U R E  3  Examples of direct (a–f) and indirect (g, h) methods to study disgust in wild animals. (a) Olive baboon exposed to a Treponema-
infected conspecific and its symptoms. (b) Replica faeces presented to Japanese macaques. (c, d) 3D printed and painted Mojave desert 
tortoise Gopherus agassizii (Techno-tortoise™) filled with an aversive substance to lure predators (ravens) and induce conditioned food 
aversion. (e) Free ranging red fox Vulpes vulpes eating an aversive treated egg to protect ground-nesting birds. (f) Automated Behavioural 
Response system that could be used to display sounds of sickness when animals pass by. (g) Higher utilization of sites (red) in mandrills 
negatively correlates with faecal contamination. (h) Chimpanzee face recognition via deep learning. Photo credits (from a to h): Filipa M. D. 
Paciência; Cécile Sarabian; Tim Shields/Hardshell Labs; Michael Clinchy; Jorge Tobajas; Clémence Poirotte; The Bossou Archive Project of 
Kyoto University/Daniel Schofield.
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3.1  |  Artificial contaminants and conspecifics

One way to trigger disgust in animals is to reproduce what can make 
them sick. These replicas can concern biological contaminants with 
which contact should be avoided or sick conspecifics from whom 
distance should be maintained. Previous experimental studies in 
the field and in different captive conditions have tested whether 
replica faeces deter primates from foraging (Figure 3b). Individuals 
either fed significantly less on top of replica (Japanese macaques: 
Sarabian & MacIntosh, 2015; mandrills: Sarabian et al.,  2020), pri-
oritized food on top of control substrates (chimpanzees: Sarabian 
et al., 2017) or investigated and processed the ‘contaminated’ food 
before eating (Japanese macaques: Sarabian & MacIntosh,  2015; 
long-tailed macaques: Sarabian et al., 2020). Besides visuals, olfac-
tory cues of biological contaminants can be isolated or reproduced 
and tested. Surfaces impregnated with rotten fruit, rotten meat or 
faeces odours, for example, elicit significantly less contacts from 
bonobos than control odours (Sarabian, Belais, MacIntosh, 2018a). 
Another method to mimic biological contaminants consists in repli-
cating their texture. After touching an invisible soft and moist piece 
of dough, only half of the chimpanzees tested ate the valued banana 
reward, against most of them after touching the solid and dry control 
rope (Sarabian et al., 2017). Taken together, these results highlight 
the importance of visual, olfactory and tactile cues in contaminant 
recognition and avoidance in primates. Future field studies could 
gather all sensory cues associated with disease risk in one artificial 
contaminant.

An alternative or complementary way to simulate disease risk 
is to replicate sick or non-hygienic conspecifics using different 
sensory modalities (Figure  3a). To our knowledge, this approach 
has been restricted to a few taxa in captivity by adding artifices 
to healthy individuals. Female captive sage grouse Centrocercus 
urophasianus, for instance, avoid males with artificial haematomas 
supposed to resemble those created by lice (Spurrier et al., 1991). 
The use of artificial animals or their byproducts (e.g. eggs) in ani-
mal behaviour research is nonetheless increasing, both in the lab 
and the field (e.g. Frohnwieser et al.,  2019; Hauber et al.,  2021; 
Le Maho et al., 2014). Realistic and interactive models are created 
with the use of novel technologies such as 3D printing (Figure 3c). 
Models could be adapted to display visual or olfactory cues of dis-
ease, for example yaws-like facial skin lesions in an infant gorilla, 
and observe the proportion of contacts, the number of positive 
and negative interactions, and so forth by other group members 
(compared to a control model). Artificial models can also be used 
in aversion studies to protect endangered species from invasive 
ones (e.g. Techno-tortoise™, Hardshell Labs; Figure 3d) or to test 
aversion toward conspecifics or prey (see 4.). Responses to arti-
ficial conspecifics could then be compared across species with 
different social systems to test the potential differences or con-
vergences in behavioural immunity. Although artificial models can 
be recognized as not being true conspecifics after sensory investi-
gations, the initial phases of interactions can still provide valuable 
information.

3.2  |  Playback experiments

The use of acoustic cues to study disgust and pathogen avoid-
ance is limited to humans in the lab (Michalak et al.,  2020; Speed 
et al., 2021). This is perhaps due to the challenge of identifying and 
recording relevant sounds of sickness in animals. If available, such 
cues (e.g. cough, sneeze, diarrhoea) could be added to artificial con-
specifics or their byproducts (see above) along with visual, haptic 
and/or olfactory ones (e.g. mucus on the nose, brown sticky sub-
stance on the hindquarters, butyric acid to replicate the odour of 
vomit). Such playback experiments could be implemented via an 
Automated Behavioural Response system (i.e camera trap system 
with speaker that displays programmed sounds when an animal is 
detected; Suraci et al., 2017; Figure 3f).

3.3  |  Conditioned-taste aversion

Testing disgust via taste in the field may be more challenging due to 
the nature of the cue, which requires mouth contact with or inges-
tion of a toxic substance. Depending on the field site and the species 
tested (whether considered a pest or not and neophobic or not), this 
type of invasive experiment may nonetheless be possible with suf-
ficient welfare assessment (Smith et al., 2022). Lab experiments with 
rats and other rodents show that taste aversion, in comparison to 
taste avoidance, induces disgust-associated responses such as nau-
sea and gaping (Parker, 2003; Schier et al., 2019). CTA experiments 
in the field do not necessarily consider the relation of taste aversion 
with disgust but rather focus on its applications to mitigate human-
wildlife conflicts (Snijders et al., 2021). The method uses illness in-
ducing substances in or on target food/substrates with a variety of 
species involved in these conflicts to reduce their consummatory 
behaviours. Successful field experiments show a reduction of egg 
predation (Figure  3e), toxic species/bait consumption and valued 
species depredation (Snijders et al., 2021). These experiments often 
combine illness-inducing toxins with other sensory cues (i.e. visual 
or odour) during the conditioning phase, and show that the sensory 
cue alone in the post-conditioning phase is enough to induce aver-
sion (Dimmick & Nicolaus, 1990; Tobajas, Ruiz-Aguilera, et al., 2020).

3.4  |  Remote sensing technologies

Bio-loggers are increasingly used in ecological studies (Fehlmann 
& King, 2016), most of the time attached to the animals (Wilmers 
et al., 2015), but also to food (see below) or tools (Katarina Almeida-
Warren, unpubl. data) and thus help in the monitoring of animal be-
haviour. The cascading effects of disgust at a landscape level have 
not yet been empirically assessed (Weinstein et al.,  2018), how-
ever, recent studies show the possibility of doing so. Gálvez and 
Hernández  (2022), for example, placed tagged seeds and camera 
traps next to ocelot Leopardus pardalis urine and faeces and found 
a lower rate of seed dispersal by agoutis Dasyprocta punctata under 
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simulated predation risk. One could replace ocelot faeces and urine 
by non-predator faeces (of conspecifics or other rodents from which 
parasites/pathogens can be acquired) and test whether such cues 
also affect agoutis' seed dispersal and landscape use. Using hand-
held GPS devices, Poirotte et al.  (2019) recorded mandrill ranging 
behaviour in the rainforest and showed less frequent returning to 
sites highly contaminated by conspecific faeces compared to sites 
with lower contamination levels (Figure 3g). One could next inves-
tigate how such movement patterns linked to contamination affect 
interspecies interactions at different trophic levels.

3.5  |  Artificial intelligence

Disgust-related avoidance behaviours could be automatically tracked/
detected via machine learning (developed algorithms) based on im-
ages collected by video/drone, camera trap or other types of devices. 
Depending on the scale of the images or footages (e.g. aerial view, indi-
vidual focus), the processing can answer different questions related to 
landscape use, body movements, social networks, or facial expressions 
to assess pathogen avoidance at an individual or collective level. For 
example, deep-convolutional neural network models can individually 
recognize dozens of individuals from video footage and allow social 
network analysis based on co-occurrences of identified individuals in 
video frames (Schofield et al., 2019; Figure 3h). DeepPoseKit (Graving 
et al., 2019) and DeepLabCut (Mathis et al., 2018) are software pack-
ages that allow pose estimation on the animal body and could auto-
matically track body features such as the camouflaging of an octopus, 
the facial muscle activation of a primate or the head retraction of a 
turtle—behaviours that could be analysed in response to pathogen 
sensory cues. Finally, these tools/approaches could be applied to wild-
life management and conservation (Tuia et al., 2022) by investigating, 
for instance, animal movements after a disgust-based intervention.

4  |  DISGUST RECIPES:  FROM SOLITARY 
TO COLONIAL SPECIES

Below, we provide a basis for testing disgust across landscapes, con-
texts and species, at different levels of sociality. According to the 
social system, ecology and resources on which each species subsists, 
we expect different trade-offs at play and thus different responses 
(see Table 1). The selected examples below (Figure 4) are highly rel-
evant models to study disgust, disease avoidance and applications as 
they are representatives of given social and sensory environments, 
ecological niches, and life histories with their varying levels of pres-
sure regarding disease, predation and competition.

4.1  |  Relatively solitary species

Due to their low frequency of interactions with conspecifics, soli-
tary species are less exposed to socially transmitted pathogens and 

endoparasites (except during reproduction). Disease risk, nonethe-
less, goes beyond conspecifics. Resources present in the habitat 
and proximity with other species also entail a risk of infection/in-
toxication and require investment in ART strategies. In fact, nearly 
70% of mammals are solitary (Lukas & Clutton-Brock,  2013). The 
Javan slow loris Nycticebus javanicus, for instance, is a small arbo-
real, nocturnal and territorial primate from West Java, Indonesia, 
with the capacity to produce venom to compete with conspecifics 
(Nekaris et al.,  2020). Little is known about its parasite and path-
ogen handling strategies. Given their lifestyle, it is possible that 
slow lorises did not evolve a similar sensitivity to soil- and faeces-
contamination as (semi-)terrestrial and group-living primates did 
(see e.g. Poirotte et al., 2019; Sarabian & MacIntosh, 2015). Arboreal 
and group-living female woolly monkeys Lagothrix lagotricha poep-
pigii (Ll) and grey mouse lemurs avoid food contaminated by con-
specifics (both) and their own faeces (Ll) to various degrees, but 
they do not avoid soil-contaminated food (Ll; Philippon et al., 2021; 
Poirotte & Kappeler, 2019). Slow lorises may be less careful about 
where they defecate compared to social arboreal primates who 
would, for example, select tree branches lower than foraging sites 
and having less foliage beneath to avoid faeces exposure among the 
group (Gilbert, 1997). Note that reinfection is probably less costly 
than novel parasite/pathogen acquisition, which may have alleviated 
certain pathogen selective pressure on solitary species/sexes and 
resulted in an absence of avoidance in the associated contexts (see 
e.g. Poirotte & Kappeler, 2019). One potential avenue to investigate 
pathogen avoidance in N. javanicus and related species would be to 
conduct foraging experiments with sensory cues simulating disease 
risk. Considering the ecology of the species, individuals may avoid 
consuming food and returning to sites associated with perceived 
disease risk, for example with faecal contamination from other 
arboreal non-predator species but not soil or conspecific faeces 
contamination.

Each habitat has its own specificities, which should be con-
sidered in disgust and disease avoidance. Parasites found on land 
and in water are different and well adapted to these environments. 
In aquatic environments, they do not desiccate, can survive lon-
ger outside their host and are more easily transported (McCallum 
et al., 2003; Poulin & Morand, 2004). Moreover, toxic biological con-
taminants such as heavy metals are largely found in aquatic ecosys-
tems; suspended in water, deposited in sediments or accumulated in 
animals (Ding et al., 2022). These high concentrations of pollutants 
and high exposure to parasites mean that aquatic species should be 
especially prone to handle these risks. For example, cephalopods 
such as the common octopus Octopus vulgaris are susceptible to 
environmental and prey contamination by heavy metals and phar-
maceuticals to which they may respond with avoidance after tast-
ing the prey (see Altman,  1971 for laboratory experiments with a 
bitter-tasting chemical). Alternatively, cephalopods may accumulate 
heavy metals in their digestive gland and detoxify them (Penicaud 
et al.,  2017; Rodrigo & Costa,  2017) by producing proteins that 
bind to metals to prevent oxidative stress (Sillero-Ríos et al., 2018). 
If doses are too high, Sykes et al.  (2020) suggest that cephalopods 
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such as octopuses may have the ability to vomit and expel these 
contaminants. The common octopus can serve as a model to test 
how aquatic and relatively solitary species, relying on safe shelters 
for reproduction and survival, cope with biological contamination 
in their natural environment. One could manipulate dens, tools 
(i.e. bivalve shells or stones to block dens and hide from predators; 
Mather, 1994; Figure 4a) and prey by coating them with a pollutant 
to create an ‘aquatic landscape of disgust’ and test for consistency in 
avoidance across time and contexts among individuals.

4.2  |  Group-living species

Proximity and habitat sharing with conspecifics or closely related 
species favour faecal-oral parasite transmission via contaminated 
substrates, food and water, but also airborne pathogen transmis-
sion via droplets and contaminated environments. Therefore, group-
living species may be exposed to a higher diversity of parasites and 
pathogens than relatively solitary ones. Social species are expected 
to have developed an arsenal of pathogen handling strategies, rela-
tive to other factors that may increase or decrease their susceptibility 
to disease, that is ecological niche and life history parameters (Lopes 
et al., 2022). For instance, elephants, given their fission-fusion social 
system and herd size (up to 100 individuals in African savannah ele-
phants Loxodonta africana), diet, habitat, and long lifespan are under 
high endoparasite/pathogen pressure (Coulson et al.,  2018; Jiang 
et al.,  2020; Lynsdale et al.,  2017; Patterson & Ruckstuhl,  2013). 
What we know regarding parasite handling strategies in these 

megaherbivores is yet limited to a few behavioural studies. In the 
arid regions of southern Africa, elephants avoid artificial waterholes 
with high levels of Escherichia coli contamination (Ndlovu et al., 
2018) and dig wells with their feet and trunks to potentially reduce 
the acquisition of such faecal coliform bacteria (Ramey et al., 2013). 
A recent experiment also shows that they would avoid crossing a 
line to get food behind it when that pipe/string is impregnated with 
volatile compounds present in carnivore faeces (indole or phenol; 
Valenta et al., 2021). The latter are released during the decomposi-
tion of proteins by pathogenic bacteria elephants are susceptible to 
be infected with. Further tests are now needed to discriminate per-
ceived predation from perceived disease risk here. Elephants Elephas 
maximus may also tolerate gastrointestinal nematode infection 
within the group, as if the benefits of sociality outweigh the costs 
of parasite infection (Lynsdale et al., 2022). Much more remains to 
be tested when it comes to disgust and disease avoidance, such as 
whether pathogen-related smells drive their foraging decisions and 
space use at a landscape level.

4.3  |  Colonial species

Colonial species can live in groups of dozens to millions of individu-
als in close association to procure strong mutual benefits such as 
stronger defence against predators, resistance against disease 
or thermoregulation (Le Bohec et al., 2005; Traniello et al., 2002), 
traded-off with increased pathogen transmission risk. Social insects, 
bats, mandrills or banded mongooses are good examples of these. 

F I G U R E  4  Proposed species and ecological contexts for disgust-related avoidance behaviour experiments and their applications: (a) 
common octopus in a shallow coastal water; (b) Javan slow loris in a highly degraded habitat; (c) red-eared sliders at a basking site; (D) Asian 
elephant around crop plantations; (e) carrion crow in an urban environment; (f) tourist visiting mountain gorillas; (g) Adélie penguins at 
the colony's nesting site. Photo credits (from a to g): Eduardo Sampaio/Captain Darwin; Andrew Walmsley; Cécile Sarabian; Comparative 
Cognition for Conservation Lab, Hunter College, CUNY; Kenneth Keuk; Ryoma Otsuka; Andrew J. J. MacIntosh.
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In these species, avoidance of sick conspecifics is not always ob-
served (Poirotte & Charpentier,  2020; Stockmaier et al.,  2020). In 
fact, resistance or tolerance might even be more efficient (Fairbanks 
et al., 2015; Traniello et al., 2002). Colonies can gain collective immu-
nity by aggregating and using a dilution effect. Rabbits Oryctolagus 
cuniculus, for instance, do not avoid each other when outbreaks of 
viral haemorrhagic disease occur, but instead increase density in 
burrows, increasing the rate of contacts and thus quickly gaining im-
munity to the disease before it becomes highly infective and trans-
mitted by fleas (Calvete et al., 2002). In other colonial species such 
as those living in rapidly changing cold habitats, little is known about 
disease handling strategies. Adélie penguins Pygoscelis adeliae, for 
instance, can be infected by various protozoa (e.g. Cryptosporidium 
spp., coccidia; Barbosa & Palacios, 2009), pathogenic bacteria and 
viruses (poliomaviruses; Varsani et al., 2015), which are passed on 
via contact with faecally-contaminated substrates during preening, 
feeding or stone gathering for nest building. During the breeding 
season on shore, male Adélies arrive first to build the nest while 
females arrive later to choose their nest and partner (Black, 2016). 
Individuals are particularly at risk of infection with direct life cycle 
pathogens due to the nests' proximity with each other and pen-
guins' behavioural tendency to propel faeces at the edge of their 
nest (Meyer-Rochow & Gal, 2003). Future studies should investigate 
nesting location strategies and potential trade-offs with parasite in-
fection, predation risk and mating/nesting success, as nests located 
in the centre may be more at risk of infection while nests at the pe-
riphery, more at risk of predation (see Schmidt et al., 2021) and more 
selected by young penguins (Penney, 1968).

Sociality, habitat, but also lifespan and activity should be consid-
ered as factors influencing disease risk and, thus, the investment of 
species in protective and defensive mechanisms against pathogens. 
Long-lived species, for instance, may not be able to afford contact-
ing pathogens with a high cost given their slow developmental peri-
ods and late reproductive success. They may therefore have evolved 
specific disease risk recognition mechanisms linked to their social-
ity and ecology and invest more in avoidance than in other strate-
gies (i.e. R, T; Figure 1). On the other hand, short-lived species may 
rather invest in disease resistance or have evolved other features 
(e.g. solitary lifestyle, arboreality) limiting their exposure to certain 
pathogens. Investigating the interactions between the sociality, life 
history and ecology of species and their investment in behavioural 
immunity versus defence against predators and competitors would 
be a fascinating avenue for future research.

5  |  APPLIC ATIONS OF DISGUST TO  
WILDLIFE MANAGEMENT AND 
CONSERVATION

Disgust-related avoidance behaviours can apply to a variety of 
problems faced by different species and populations (see Table S2). 
Below are some examples applied to key areas of concern: conserva-
tion, human-wildlife interactions and environmental change.

5.1  |  Endangered species survival: Rehabilitated 
primates in fragmented landscapes

Habitat loss and the wildlife trade are among the main threats to 
primates (Estrada et al.,  2017). Seizures, trafficking and finds by 
local people due to habitat fragmentation all result in arrivals at 
sanctuaries. These organizations host and may rehabilitate primates 
into their natural environments. Critically endangered Javan slow 
lorises, for example, are rehabilitated in nearby lowland fragmented 
forests, but show low survival rates (for this and other closely re-
lated species; Kenyon et al.,  2014; Moore et al.,  2014). Moreover, 
habitat fragmentation may increase ground use by slow lorises, 
as a result of connectivity loss, making them vulnerable to differ-
ent parasites and predators while moving from tree to tree (Rode-
Margono et al., 2014). Previous research in woolly monkeys shows 
a correlation between time spent in the pet trade/captivity and re-
duced parasite avoidance behaviours (Philippon et al., 2021). Based 
on Philippon et al.'s (2021) findings, we predict that individuals with 
longer times spent in captivity (i.e. pet trade and sanctuary) would 
express lower pathogen risk sensitivity compared to individuals re-
leased soon after capture; and that individuals with higher pathogen 
risk sensitivity would show higher survival rates post-reintroduction. 
Such information is crucial to design effective tests at sanctuaries, 
reduce time spent in captivity before release, and inform individual 
release decisions along with other parameters (e.g. age, body condi-
tion, etc.) to improve rehabilitation success.

5.2  |  Invasive species and disease risk mitigation

Invasive species are one of the main drivers of biodiversity loss 
(Butchart et al., 2010). Conditioned aversion learning could be used 
to limit the establishment or the spread of non-native species. For 
example, red-eared sliders Trachemys scripta elegans compete with 
native turtle species for food and basking spots (Cadi & Joly, 2003; 
Polo-Cavia et al., 2010). Sliders Trachemys spp. are the most traded 
turtles in the world (Herrel & van der Meijden, 2014), despite im-
port now being banned in many countries (Kitowski & Pachol, 2009). 
When turtles grow larger and captive care becomes more difficult, 
pet owners often release them into nature. They are considered inva-
sive in most of their introduced range (Lowe et al., 2000) and can be 
detrimental to native turtle species by competing for food and bask-
ing spots (Cadi & Joly, 2003; Polo-Cavia et al., 2010). Reasons for 
their success include their relatively rapid reproductive rate, adap-
tiveness to habitats and environments, flexibility of diet and resist-
ance or tolerance to parasites (Deng et al., 2021; Zhang et al., 2020). 
As such, it is essential to reduce their interaction with native species 
and their use of key habitats for those species. CTA can be used to 
train sliders to avoid certain foods and possibly species. By associat-
ing a specific food with a negative outcome (feeling sick), the animals 
will rapidly learn to avoid these food types, leaving them available 
for native species. This would have to be done extremely carefully 
to ensure native species are not exposed to the same conditioning. 
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However, it may be possible to do this by exposing animals at times 
of year when sliders are active while native species are not, or, by 
selecting areas where native species have already been lost. Specific 
food avoidance by sliders would give the habitat a chance to regen-
erate to allow reintroduction of native species.

5.3  |  Crop-foraging and use of agricultural lands

Human-wildlife interactions related to agriculture are ubiquitous 
and can be deleterious. Human-elephant conflict around agricultural 
fields, for example, causes many human and elephant deaths every 
year (Naha et al., 2019; Shaffer et al., 2019; Thirgood et al., 2005). 
The animals' motivation to forage on crops and to take risks enter-
ing human landscapes is likely related to nutritional/mineral needs 
(African and Asian elephants: Branco et al., 2019; Rode et al., 2006; 
Vogel et al., 2019; chacma baboons Papio ursinus: Findlay & Hill, 2020; 
Walton et al.,  2021) and/or food availability (wild boars Sus scrofa: 
Ballari & Barrios-García, 2014; Herrero et al., 2006). Few of the crop 
deterrent methods (e.g. fencing, devices using sounds and/or lights, 
chemicals) consider the animals' behaviour (Mumby & Plotnik, 2018; 
Shaffer et al.,  2019). These methods are mainly short-term solu-
tions for recurrent interactions that fail to account for the animals' 
decision-making or their complex energy needs. In contrast, we pro-
pose a system that does not physically exclude wildlife from a land-
scape but instead encourages it to avoid certain locations (entering 
crop fields) by increasing perception of certain risks (e.g. disease).

5.4  |  Urban pests

Conditioned-taste/food aversion could reduce animal scaveng-
ing behaviour on garbage and potentially apply to other human-
wildlife negative interaction contexts. General urban nuisance, 
foraging on anthropogenic resources and human health and safety 
are also reported to create conflicts (e.g. crows Corvus spp: Japan 
Ministry of the Environment, 2018; bears Ursus americanus: Lewis 
et al.,  2015; wild boars: Fernández-Aguilar et al.,  2018; Jansen 
et al., 2007). Current mitigation methods are not always legal and 
ethical (e.g. poisoning or culling; Chapron & Treves, 2016; Di Blasio 
et al., 2020) nor again consider the animals' adaptive behaviours (e.g. 
yellow trash bags that crows cannot see through). Inducing aversion 
through taste, smell, vision and social spread (even in relatively soli-
tary species, see e.g. Mazur & Seher, 2008) could have short term 
costs but longer-term benefits in species with such relevant sensory 
modalities.

5.5  |  Ecotourism and pathogen exchange  
prevention

Disease risk is an inherent component of great ape ecotourism (see 
Glasser et al., 2021; Molyneaux et al., 2021), which may be traded 

off against knowledge and awareness about infectious disease 
transmission as well as with the demand by tourists for proximity. 
In response to the COVID-19 pandemic and its potential severe 
outcomes on great ape populations (Kalema-Zikusoka et al., 2021; 
Melin et al., 2020), online and onsite education materials were de-
veloped (see www.prote​ctgre​atape​sfrom​disea​se.com and www.
goril​lafri​endly.org/pledg​e/). These campaigns emphasize disease 
risk and could be a starting point into testing how visual cues of 
disease, pathogen disgust sensitivity and visitor behaviour may in-
terplay. Further initiatives based on the adaptive system of disgust 
could use tools and behaviours associated with great ape tourism 
(i.e. smartphones and selfies) to develop a mobile application pro-
moting social distancing and mask wearing (see www.conse​rvati​
onx.com/proje​ct/id/1544/wildpic). Otsuka and Yamakoshi  (2020) 
showed the importance of the social media interface in gorilla Gorilla 
beringei beringei ecotourism and how video views and likes are cor-
related with the simultaneous exhibition of humans and gorillas in 
preview images of videos. Successful strategies to keep distance 
between tourists and gorillas would also reduce gorilla overhabitu-
ation, which can have cascading effects in other contexts (besides 
tourism) of human-gorilla interactions, such as crop foraging (Humle 
& Hill,  2016). Note that human-wildlife negative interactions are 
often seen from the human perspective but the drawback effects on 
gorillas' health should not be neglected (Hanes et al., 2018; Kalema-
Zikusoka et al., 2021; Whittier et al., 2021).

5.6  |  Sea water pollution and climate change

As sea water pollution and climate change outcomes are worsening 
(Landrigan et al., 2020), disgust could have further applications for 
species living in habitats at the forefront of such issues. The study of 
disgust in the common octopus could shed light on how cephalopods 
cope with prey and habitat contamination, and to what extent. On 
the other hand, Adélie penguins may face climate change differently 
depending on their location (asymmetry between West and East 
Antarctica) and latitude, with populations decreasing or increasing 
following sea ice fluctuations (LaRue et al., 2013). This can have cas-
cading effects on pathogen spread and may help to predict different 
scenarios (both short-term and longer-term). Future studies should 
consider how sensitivity to pathogen risk varies across colonies af-
fected differently by climate change.

We do not claim to have new miracle solutions for all the above. 
We rather propose to explore behaviours that have not been much 
considered in certain taxa/species and use such information to de-
sign evolutionary-based conservation strategies.

6  |  CONSIDER ATIONS AND 
PERSPEC TIVES

According to the ‘sociality-health-fitness nexus’, the sociality and 
ecology of a species predict its predisposition to infection with 
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certain types of pathogens (Kappeler et al., 2015). Solitary species 
may be less susceptible to directly transmitted pathogens while so-
cial species may be more vulnerable to them (Figure 5). On the other 
hand, solitary species should be more threatened by predation and 
conspecific competition, against which they may have evolved other 
defence strategies (e.g. slow loris; Nekaris et al., 2020), while social 
species may gain protection from the group (e.g. Asian elephants) 
or use collective strategies to defend themselves against preda-
tors (e.g. Adélie penguins; Ainley et al., 2005). Further research on 
the ecology of disgust should consider both perceived disease and 
predation risks (‘ecology of peril’; Doherty & Ruehle, 2020; Moleón 
& Sánchez-Zapata, 2021; Figure 5), or to go even further, consider 
disease, predation and competition risks. These risks are intercon-
nected, although the pressure of one may vary according to the ecol-
ogy of a species. A landscape of risk (considering the three types 
of risk) could also be used in the design of effective human-wildlife 
conflict mitigation strategies while adapting to ecological fluctua-
tions and individual variability.

Testing responsivity to pathogen risk under natural conditions 
might be challenging from several perspectives. In cases of practical 
challenges (e.g. due to the terrain), either long hours of observations 

and/or novel technologies are required, by focusing on, for example 
‘microbehaviours’ (behaviours at a refined scale) associated with dis-
ease risk (what/whom do the individuals contact, eat, etc.), or com-
plementary experimental tests in captivity. In some cases, it might 
also be difficult to obtain approval from ethical committees and con-
duct research in protected areas (e.g. tourists, penguins). This may 
be because of the required environmental/food contamination or 
because experiments touch upon lucrative businesses. Associating 
disgust to the latter may be perceived in a negative way. However, in 
the current context of climate change and pandemic, the outcomes 
of such research should be perceived as bringing more benefits and 
knowledge than drawbacks.

As one should carefully consider the ethical, moral and political im-
plications of using disgust in public health campaigns (Lupton, 2015), 
the same dimensions should not be neglected in fundamental or 
applied research with animals. In an example of an experiment with 
gorilla tourists, the side of the gorilla can be taken by presenting non-
photoshopped images of the outcomes of respiratory diseases in an 
endangered species. The idea is not to shock viewers but to make 
them associate their behaviour with an outcome, which can be neg-
ative, by visualizing it and calling on their adaptive system of disgust. 

F I G U R E  5  Sociality and peril. Disease and predation risks are predicted to vary with the sociality of the species; the former increasing 
with social traits (aggregation: red-eared slider; fission-fusion: Asian elephant, carrion crow, human; colony: Adélie penguin) while the latter 
increases in relatively solitary species (e.g. common octopus and Javan slow loris—credit: Kenneth Keuk). Model species vary in their lifespan 
and habitat, which may affect their investment in avoidance/defence strategies against parasites/pathogens and predators. The main 
sensory cue that can be used in future experiments (adapted to the ecology of the species) as well as wildlife management and conservation 
applications are also represented. Created with BioRender.
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Future experiments could compare whether taking the side of gorillas 
is leading to more distance and mask wearing than when disease risk 
is emphasized for humans. For other species (e.g. octopus, loris, slider, 
crow), we propose experiments with biological contaminants that are 
already present in the species' environment or with substances that 
induce short-term sickness (Tobajas et al., 2019). Both strategies are 
based on unpleasantness or a certain degree of illness, which con-
fers on them their evolutionary relevance and effectiveness. The 
proposed experiments are not supposed to create habituation to the 
presented cues, except for the mild ones depending on the implied 
trade-offs. Researchers should ensure that non-target species have 
no or limited access to anything presented during experimentation 
(Smith et al., 2022), which may have unwanted cascading effects, and 
the design should be as specific as possible to the diet and ecology of 
the species (e.g. drilled gum discs for slow lorises).

Finally, we propose to create a database (e.g. “ManyPTA”—Parasites 
To Avoid), which would gather the existing literature (Table S1) but also 
the pending experiments and the animal taxa from which we know 
very little (e.g. crocodilians, chameleons), where scientists and prac-
titioners can communicate about what works and what does not. For 
the applied side, a collaborative platform that exchanges knowledge, 
ideas and experiences about human-wildlife interaction issues such as 
‘ENCOSH’ (see www.encosh.org) could be the place to propose a ‘dis-
gust toolbox’ for wildlife management and conservation.
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